Constrained Ramsey Numbers
نویسندگان
چکیده
For two graphs S and T , the constrained Ramsey number f(S, T ) is the minimum n such that every edge coloring of the complete graph on n vertices (with any number of colors) has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T . Here, a subgraph is said to be rainbow if all of its edges have different colors. It is an immediate consequence of the Erdős-Rado Canonical Ramsey Theorem that f(S, T ) exists if and only if S is a star or T is acyclic. Much work has been done to determine the rate of growth of f(S, T ) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang, and Ling showed that f(S, T ) ≤ O(st) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this paper, we study this case and show that f(S, Pt) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.
منابع مشابه
Zarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملThe Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملOrdered and partially-ordered variants of Ramsey's theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii PRELIMINARIES AND NOTATION . . . . . . . . . . . . . . . . . . . . . ix CHAPTER 1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Graph Ramsey Number . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Arrow Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 The Dir...
متن کاملRamsey Theory
Ramsey theory is a branch of mathematics that focuses on the appearance of order in a substructure given a structure of a specific size. This paper will explore some basic definitions of and history behind Ramsey theory, but will focus on a subsection of Ramsey theory known as Ramsey numbers. A discussion of what Ramsey numbers are, some examples of their relevance in real-life scenarios, and a...
متن کاملRamsey numbers and adiabatic quantum computing.
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 29 شماره
صفحات -
تاریخ انتشار 2007